Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.477
Filtrar
1.
STAR Protoc ; 5(2): 103060, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38700979

RESUMO

Preservation of fine cellular details of semi-adherent or suspension cells for imaging by immunofluorescence is challenging. This protocol enables staining of floating cells with minimal morphological distortions, as we demonstrate with the semi-adherent multiple myeloma cell line RPMI 8226. We describe steps to better preserve structural details by fixing, permeabilizing, and staining cells in solution, while minimizing the number of centrifugation steps and centrifugation g-force. For complete details on the use and execution of this protocol, please refer to Osei-Amponsa et al.1.

2.
Cancers (Basel) ; 16(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38730707

RESUMO

The development of multiple-drug-resistant (MDR) cancer all too often signals the need for toxic alternative therapy or palliative care. Our recent in vivo and in vitro studies using canine MDR lymphoma cancer cells demonstrate that the Anaphase Promoting Complex (APC) is impaired in MDR cells compared to normal canine control and drug-sensitive cancer cells. Here, we sought to establish whether this phenomena is a generalizable mechanism independent of species, malignancy type, or chemotherapy regime. To test the association of blunted APC activity with MDR cancer behavior, we used matched parental and MDR MCF7 human breast cancer cells, and a patient-derived xenograft (PDX) model of human triple-negative breast cancer. We show that APC activating mechanisms, such as APC subunit 1 (APC1) phosphorylation and CDC27/CDC20 protein associations, are reduced in MCF7 MDR cells when compared to chemo-sensitive matched cell lines. Consistent with impaired APC function in MDR cells, APC substrate proteins failed to be effectively degraded. Similar to our previous observations in canine MDR lymphoma cells, chemical activation of the APC using Mad2 Inhibitor-1 (M2I-1) in MCF7 MDR cells enhanced APC substrate degradation and resensitized MDR cells in vitro to the cytotoxic effects of the alkylating chemotherapeutic agent, doxorubicin (DOX). Using cell cycle arrest/release experiments, we show that mitosis is delayed in MDR cells with elevated substrate levels. When pretreated with M2I-1, MDR cells progress through mitosis at a faster rate that coincides with reduced levels of APC substrates. In our PDX model, mice growing a clinically MDR human triple-negative breast cancer tumor show significantly reduced tumor growth when treated with M2I-1, with evidence of increased DNA damage and apoptosis. Thus, our results strongly support the hypothesis that APC impairment is a driver of aggressive tumor development and that targeting the APC for activation has the potential for meaningful clinical benefits in treating recurrent cases of MDR malignancy.

3.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38731980

RESUMO

Extracellular vesicles (EVs) are produced by all kinds of cells, including endothelial cells. It has been observed that EVs present in fetal bovine serum (FBS), broadly used in cell culture, can be a confounding factor and lead to misinterpretation of results. To investigate this phenomenon, human brain microvascular endothelial cells (HBMECs) were cultured for 2 or 24 h in the presence of EV-depleted FBS (EVdS). Cell death, gene and protein expression, and the presence of EVs isolated from these cells were evaluated. The uptake of EVs, intercellular adhesion molecule 1 (ICAM-1) expression, and monocyte adhesion to endothelial cells exposed to EVs were also evaluated. Our results revealed higher apoptosis rates in cells cultured with EVdS for 2 and 24 h. There was an increase in interleukin 8 (IL8) expression after 2 h and a decrease in interleukin 6 (IL6) and IL8 expression after 24 h of culture. Among the proteins identified in EVs isolated from cells cultured for 2 h (EV2h), several were related to ribosomes and carbon metabolism. EVs from cells cultured for 24 h (EV24h) presented a protein profile associated with cell adhesion and platelet activation. Additionally, HBMECs exhibited increased uptake of EV2h. Treatment of endothelial cells with EV2h resulted in greater ICAM-1 expression and greater adherence to monocytes than did treatment with EV24h. According to our data, HBMEC cultivated with EVdS produce EVs with different physical characteristics and protein levels that vary over time.


Assuntos
Adesão Celular , Células Endoteliais , Vesículas Extracelulares , Molécula 1 de Adesão Intercelular , Humanos , Vesículas Extracelulares/metabolismo , Células Endoteliais/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Monócitos/metabolismo , Células Cultivadas , Apoptose
4.
Food Res Int ; 186: 114396, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729738

RESUMO

Cell culture meat is based on the scaled-up expansion of seed cells. The biological differences between seed cells from large yellow croakers in the two-dimensional (2D) and three-dimensional (3D) culture systems have not been explored. Here, satellite cells (SCs) from large yellow croakers (Larimichthys crocea) were grown on cell climbing slices, hydrogels, and microcarriers for five days to analyze the biological differences of SCs on different cell scaffolds. The results exhibited that SCs had different cell morphologies in 2D and 3D cultures. Cell adhesion receptors (Itgb1andsdc4) and adhesion spot markervclof the 3D cultures were markedly expressed. Furthermore, myogenic decision markers (Pax7andmyod) were significantly enhanced. However, the expression of myogenic differentiation marker (desmin) was significantly increased in the microcarrier group. Combined with the transcriptome data, this suggests that cell adhesion of SCs in 3D culture was related to the integrin signaling pathway. In contrast, the slight spontaneous differentiation of SCs on microcarriers was associated with rapid cell proliferation. This study is the first to report the biological differences between SCs in 2D and 3D cultures, providing new perspectives for the rapid expansion of cell culture meat-seeded cells and the development of customized scaffolds.


Assuntos
Adesão Celular , Técnicas de Cultura de Células , Diferenciação Celular , Proliferação de Células , Hidrogéis , Células Satélites de Músculo Esquelético , Alicerces Teciduais , Animais , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/citologia , Hidrogéis/química , Alicerces Teciduais/química , Técnicas de Cultura de Células em Três Dimensões/métodos , Células Cultivadas , Desmina/metabolismo , Fator de Transcrição PAX7/metabolismo , Fator de Transcrição PAX7/genética , Desenvolvimento Muscular
5.
Heliyon ; 10(9): e29936, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707401

RESUMO

Intact (whole) cell MALDI TOF mass spectrometry is a commonly used tool in clinical microbiology for several decades. Recently it was introduced to analysis of eukaryotic cells, including cancer and stem cells. Besides targeted metabolomic and proteomic applications, the intact cell MALDI TOF mass spectrometry provides a sufficient sensitivity and specificity to discriminate cell types, isogenous cell lines or even the metabolic states. This makes the intact cell MALDI TOF mass spectrometry a promising tool for quality control in advanced cell cultures with a potential to reveal batch-to-batch variation, aberrant clones, or unwanted shifts in cell phenotype. However, cellular alterations induced by change in expression of a single gene has not been addressed by intact cell mass spectrometry yet. In this work we used a well-characterized human ovarian cancer cell line SKOV3 with silenced expression of a tumor suppressor candidate 3 gene (TUSC3). TUSC3 is involved in co-translational N-glycosylation of proteins with well-known global impact on cell phenotype. Altogether, this experimental design represents a highly suitable model for optimization of intact cell mass spectrometry and analysis of spectral data. Here we investigated five machine learning algorithms (k-nearest neighbors, decision tree, random forest, partial least squares discrimination, and artificial neural network) and optimized their performance either in pure populations or in two-component mixtures composed of cells with normal or silenced expression of TUSC3. All five algorithms reached accuracy over 90 % and were able to reveal even subtle changes in mass spectra corresponding to alterations of TUSC3 expression. In summary, we demonstrate that spectral fingerprints generated by intact cell MALDI-TOF mass spectrometry coupled to a machine learning classifier can reveal minute changes induced by alteration of a single gene, and therefore contribute to the portfolio of quality control applications in routine cell and tissue cultures.

6.
Arch Microbiol ; 206(6): 246, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704767

RESUMO

Shake-flask culture, an aerobic submerged culture, has been used in various applications involving cell cultivation. However, it is not designed for forced aeration. Hence, this study aimed to develop a small-scale submerged shaking culture system enabling forced aeration into the medium. A forced aeration control system for multiple vessels allows shaking, suppresses volatilization, and is attachable externally to existing shaking tables. Using a specially developed plug, medium volatilization was reduced to less than 10%, even after 45 h of continuous aeration (~ 60 mL/min of dry air) in a 50 mL working volume. Escherichia coli IFO3301 cultivation with aeration was completed within a shorter period than that without aeration, with a 35% reduction in the time-to-reach maximum bacterial concentration (26.5 g-dry cell/L) and a 1.25-fold increase in maximum concentration. The maximum bacterial concentration achieved with aeration was identical to that obtained using the Erlenmeyer flask, with a 65% reduction in the time required to reach it.


Assuntos
Meios de Cultura , Escherichia coli , Escherichia coli/crescimento & desenvolvimento , Volatilização , Meios de Cultura/química , Reatores Biológicos/microbiologia , Técnicas Bacteriológicas/métodos
7.
Food Environ Virol ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698288

RESUMO

Human norovirus is transmitted mainly via the faecal-oral route, but norovirus disease outbreaks have been reported in which airborne transmission has been suggested as the only explanation. We used murine norovirus (MNV) as a surrogate for human norovirus to determine the aerosolization of infectious norovirus in an experimental setup. A 3-l air chamber system was used for aerosolization of MNV. Virus in solution (6 log10 TCID50/ml) was introduced into the nebulizer for generating aerosols and a RAW 264.7 cell dish without a lid was placed in the air chamber. Cell culture medium samples were taken from the dishes after the aerosol exposure time of 30 or 90 min, and the dishes were placed in a 37 °C, 5% CO2 incubator and inspected with a light microscope for viral cytopathic effects (CPEs). We determined both the infectious MNV TCID50 titre and used an RT-qPCR assay. During the experiments, virus infectivity remained stable for 30 and 90 min in the MNV solution in the nebulizer. Infectious MNV TCID50 values/ml of 2.89 ± 0.29 and 3.20 ± 0.49 log10 were measured in the chamber in RAW 264.7 cell dish media after the 30-min and 90-min exposure, respectively. The MNV RNA loads were 6.20 ± 0.24 and 6.93 ± 1.02 log10 genome copies/ml, respectively. Later, a typical MNV CPE appeared in the aerosol-exposed RAW cell dishes. We demonstrated that MNV was aerosolized and that it remained infectious in the experimental setup used. Further studies required for understanding the behaviour of MNV in aerosols can thus be performed.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38744772

RESUMO

Watching living cells through a microscope is much more exciting than seeing pictures of cells in high school and college textbooks. However, bringing cell cultures into the classroom is challenging for biology teachers since culturing cells requires sophisticated and expensive instruments such as a CO2 incubator and an inverted phase-contrast microscope. Here, we describe easy and affordable methods to culture and observe skeletal muscle cells using the L-15 culture medium, tissue culture flask, standard dry incubator, standard upright microscope, and modified Smartphone microscope. Watching natural living cells in a "Do-It-Yourself (DIY)" way may inspire more students' interest in cell biology.

9.
Sci Rep ; 14(1): 11056, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744935

RESUMO

Osteosarcoma is the most common malignant bone cancer in pediatric patients. Patients who respond poorly to chemotherapy experience worse clinical outcomes with a high mortality rate. The major challenge is the lack of effective drugs for these patients. To introduce new drugs for clinical approval, preclinical studies based on in vitro models must demonstrate the potency of the tested drugs, enabling the drugs to enter phase 1 clinical trials. Patient-derived cell culture is a promising testing platform for in vitro studies, as they more accurately recapitulate cancer states and genetic profiles compared to cell lines. In the present study, we established patient-derived osteosarcoma cells (PDC) from a patient who had previously been diagnosed with retinoblastoma. We identified a new variant of a germline mutation in the RB1 gene in the tissue of the patient. The biological effects of this PDC were studied to observe whether the cryopreserved PDC retained a feature of fresh PDC. The cryopreserved PDC preserved the key biological effects, including cell growth, invasive capability, migration, and mineralization, that define the conserved phenotypes compared to fresh PDC. From whole genome sequencing analysis of osteosarcoma tissue and patient-derived cells, we found that cryopreserved PDC was a minor population in the origin tissue and was selectively grown under the culture conditions. The cryopreserved PDC has a high resistance to conventional chemotherapy. This study demonstrated that the established cryopreserved PDC has the aggressive characteristics of osteosarcoma, in particular the chemoresistance phenotype that might be used for further investigation in the chemoresistant mechanism of osteosarcoma. In conclusion, the approach we applied for primary cell culture might be a promising method to generate in vitro models for functional testing of osteosarcoma.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Retinoblastoma , Humanos , Osteossarcoma/genética , Osteossarcoma/patologia , Osteossarcoma/tratamento farmacológico , Retinoblastoma/genética , Retinoblastoma/patologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Neoplasias Ósseas/tratamento farmacológico , Linhagem Celular Tumoral , Proteínas de Ligação a Retinoblastoma/genética , Proliferação de Células , Mutação em Linhagem Germinativa , Criopreservação , Masculino , Perfilação da Expressão Gênica , Movimento Celular/genética
10.
Vet Q ; 44(1): 1-12, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38726839

RESUMO

Duck plague (DP) is an acute, contagious and fatal disease, caused by duck enteritis virus (DEV), with worldwide distribution causing several outbreaks and posing severe economic losses. The present study was carried out with a goal of development of a live attenuated cell culture based DP vaccine using an Indian strain of DEV and evaluation of its safety, efficacy along with complete genome analysis. The live attenuated DP vaccine (DPvac/IVRI-19) was developed by serial propagation of a virulent isolate of DEV (DEV/India/IVRI-2016) in the chicken embryo fibroblast (CEF) primary cell culture. Adaptation of DEV in CEF cell culture was indicated by more rapid appearance of cytopathic effects (CPE) and gradual increase of virus titre, which reached up to 107.5 TCID50/mL after 41 passages. The safety, immunogenicity and efficacy of the vaccine were determined by immunization trials in ducklings. The DPvac/IVRI-19 was found to be avirulent and completely safe in the ducklings. Further, the vaccine induced both humoral and cell mediated immune responses and afforded 100% protection against the virulent DEV challenge. A comparison of the whole genome of DPvac/IVRI-19 (MZ911871) and DEV/India/IVRI-2016 (MZ824102) revealed significant number of mutations, which might be associated with viral attenuation. Phylogenetic tree of DEV/India/IVRI-2016 revealed its evolutionary relationship with other DEV isolates, but it formed a separate cluster with certain unique mutations. Thus, with the proven safety and 100% efficacy, the DPvac/IVRI-19 is suitable for large scale production with precisely pure form of vaccine and has potential utility at national and global levels.


Assuntos
Patos , Fibroblastos , Mardivirus , Doenças das Aves Domésticas , Vacinas Atenuadas , Vacinas Virais , Animais , Vacinas Atenuadas/imunologia , Patos/virologia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia , Fibroblastos/virologia , Embrião de Galinha , Vacinas Virais/imunologia , Mardivirus/imunologia , Mardivirus/patogenicidade , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/prevenção & controle , Infecções por Herpesviridae/virologia , Índia
11.
STAR Protoc ; 5(2): 103059, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38717906

RESUMO

Physiological double-stranded breaks (DSBs) are a major source of genomic instability. Here, we present a protocol for mapping physiological DSBs by in-suspension break labeling in situ and sequencing (sBLISS) in a single-nucleotide resolution. We describe steps for cell fixation, labeling of DSBs, DNA isolation followed by in vitro transcription (IVT), reverse transcription, and library preparation. sBLISS provides a map of DSBs over the genome and can be used to study the role of different factors in DSB formation. For complete details on the use and execution of this protocol, please refer to Hidmi et al.1.

12.
Carbohydr Polym ; 337: 122144, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710569

RESUMO

In vivo, cells interact with the extracellular matrix (ECM), which provides a multitude of biophysical and biochemical signals that modulate cellular behavior. Inspired by this, we explored a new methodology to develop a more physiomimetic polysaccharide-based matrix for 3D cell culture. Maleimide-modified alginate (AlgM) derivatives were successfully synthesized using DMTMM to activate carboxylic groups. Thiol-terminated cell-adhesion peptides were tethered to the hydrogel network to promote integrin binding. Rapid and efficient in situ hydrogel formation was promoted by thiol-Michael addition "click" chemistry via maleimide reaction with thiol-flanked protease-sensitive peptides. Alginate derivatives were further ionically crosslinked by divalent ions present in the medium, which led to greater stability and allowed longer cell culture periods. By tailoring alginate's biofunctionality we improved cell-cell and cell-matrix interactions, providing an ECM-like 3D microenvironment. We were able to systematically and independently vary biochemical and biophysical parameters to elicit specific cell responses, creating custom-made 3D matrices. DMTMM-mediated maleimide incorporation is a promising approach to synthesizing AlgM derivatives that can be leveraged to produce ECM-like matrices for a broad range of applications, from in vitro tissue modeling to tissue regeneration.


Assuntos
Alginatos , Química Click , Matriz Extracelular , Hidrogéis , Maleimidas , Compostos de Sulfidrila , Maleimidas/química , Alginatos/química , Compostos de Sulfidrila/química , Hidrogéis/química , Hidrogéis/síntese química , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Humanos , Reagentes de Ligações Cruzadas/química , Adesão Celular/efeitos dos fármacos , Animais
13.
Biotechnol Bioeng ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711222

RESUMO

In the past decade, new approaches to the discovery and development of vaccines have transformed the field. Advances during the COVID-19 pandemic allowed the production of billions of vaccine doses per year using novel platforms such as messenger RNA and viral vectors. Improvements in the analytical toolbox, equipment, and bioprocess technology have made it possible to achieve both unprecedented speed in vaccine development and scale of vaccine manufacturing. Macromolecular structure-function characterization technologies, combined with improved modeling and data analysis, enable quantitative evaluation of vaccine formulations at single-particle resolution and guided design of vaccine drug substances and drug products. These advances play a major role in precise assessment of critical quality attributes of vaccines delivered by newer platforms. Innovations in label-free and immunoassay technologies aid in the characterization of antigenic sites and the development of robust in vitro potency assays. These methods, along with molecular techniques such as next-generation sequencing, will accelerate characterization and release of vaccines delivered by all platforms. Process analytical technologies for real-time monitoring and optimization of process steps enable the implementation of quality-by-design principles and faster release of vaccine products. In the next decade, the field of vaccine discovery and development will continue to advance, bringing together new technologies, methods, and platforms to improve human health.

14.
ACS Biomater Sci Eng ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38711418

RESUMO

Microgels are advanced scaffolds for tissue engineering due to their proper biodegradability, good biocompatibility, and high specific surface area for effective oxygen and nutrient transfer. However, most of the current monodispersed microgel fabrication systems rely heavily on various precision pumps, which highly increase the cost and complexity of their downstream application. In this work, we developed a simple and facile system for the controllable generation of uniform alginate microgels by integrating a gas-shearing strategy into a glass microfluidic device. Importantly, the cell-laden microgels can be rapidly prepared in a pump-free manner under an all-aqueous environment. The three-dimensional cultured green fluorescent protein-human A549 cells in alginate microgels exhibited enhanced stemness and drug resistance compared to those under two-dimensional conditions. The pancreatic cancer organoids in alginate microgels exhibited some of the key features of pancreatic cancer. The proposed microgels showed decent monodispersity, biocompatibility, and versatility, providing great opportunities in various biomedical applications such as microcarrier fabricating, organoid engineering, and high-throughput drug screening.

15.
Front Oncol ; 14: 1293745, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720797

RESUMO

Background: The current standard of radiotherapy for inoperable locally advanced NSCLCs with single fraction doses of 2.0 Gy, results in poor outcomes. Several fractionation schedules have been explored that developed over the past decades to increasingly more hypofractionated treatments. Moderate hypofractionated radiotherapy, as an alternative treatment, has gained clinical importance due to shorter duration and higher patient convenience. However, clinical trials show controversial results, adding to the need for pre-clinical radiobiological studies of this schedule. Methods: We examined in comparative analysis the efficiency of moderate hypofractionation and normofractionation in four different NSCLC cell lines and fibroblasts using several molecular-biological approaches. Cells were daily irradiated with 24x2.75 Gy (moderate hypofractionation) or with 30x2 Gy (normofractionation), imitating the clinical situation. Proliferation and growth rate via direct counting of cell numbers, MTT assay and measurements of DNA-synthesizing cells (EdU assay), DNA repair efficiency via immunocytochemical staining of residual γH2AX/53BP1 foci and cell surviving via clonogenic assay (CSA) were experimentally evaluated. Results: Overall, the four tumor cell lines and fibroblasts showed different sensitivity to both radiation regimes, indicating cell specificity of the effect. The absolute cell numbers and the CSA revealed significant differences between schedules (P < 0.0001 for all employed cell lines and both assays) with a stronger effect of moderate hypofractionation. Conclusion: Our results provide evidence for the similar effectiveness and toxicity of both regimes, with some favorable evidence towards a moderate hypofractionation. This indicates that increasing the dose per fraction may improve patient survival and therapy outcomes.

16.
Front Immunol ; 15: 1404121, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720900

RESUMO

Pharmacodynamic assessment of T-cell-based cancer immunotherapies often focus on detecting rare circulating T-cell populations. The therapy-induced immune cells in blood-derived clinical samples are often present in very low frequencies and with the currently available T-cell analytical assays, amplification of the cells of interest prior to analysis is often required. Current approaches aiming to enrich antigen-specific T cells from human Peripheral Blood Mononuclear Cells (PBMCs) depend on in vitro culturing in presence of their cognate peptides and cytokines. In the present work, we improved a standard, publicly available protocol for T-cell immune analyses based on the in vitro expansion of T cells. We used PBMCs from healthy subjects and well-described viral antigens as a model system for optimizing the experimental procedures and conditions. Using the standard protocol, we first demonstrated significant enrichment of antigen-specific T cells, even when their starting frequency ex vivo was low. Importantly, this amplification occurred with high specificity, with no or neglectable enrichment of irrelevant T-cell clones being observed in the cultures. Testing of modified culturing timelines suggested that the protocol can be adjusted accordingly to allow for greater cell yield with strong preservation of the functionality of antigen-specific T cells. Overall, our work has led to the refinement of a standard protocol for in vitro stimulation of antigen-specific T cells and highlighted its reliability and reproducibility. We envision that the optimized protocol could be applied for longitudinal monitoring of rare blood-circulating T cells in scenarios with limited sample material.


Assuntos
Linfócitos T , Humanos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Antígenos Virais/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Células Cultivadas , Vacinas Anticâncer/imunologia
17.
STAR Protoc ; 5(2): 103061, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38722740

RESUMO

Human alveolar macrophages are a unique myeloid subset critical for understanding pulmonary diseases and are difficult to access. Here, we present a protocol to generate human alveolar macrophage-like (AML) cells from fresh peripheral blood mononuclear cells or purified monocytes. We describe steps for cell isolation, incubation in a defined cocktail of pulmonary surfactant and lung-associated cytokines, phenotype analysis, and validation with human alveolar macrophages. We then detail procedures for quality control and technical readouts for monitoring microbial response. For complete details on the use and execution of this protocol, please refer to Pahari et al.1 and Neehus et al.2.

18.
Biotechnol Bioeng ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38702962

RESUMO

The growing demand for biological therapeutics has increased interest in large-volume perfusion bioreactors, but the operation and scalability of perfusion membranes remain a challenge. This study evaluates perfusion cell culture performance and monoclonal antibody (mAb) productivity at various membrane fluxes (1.5-5 LMH), utilizing polyvinylidene difluoride (PVDF), polyethersulfone (PES), or polysulfone (PS) membranes in tangential flow filtration mode. At low flux, culture with PVDF membrane maintained higher cell culture growth, permeate titer (1.06-1.34 g/L) and sieving coefficients (≥83%) but showed lower permeate volumetric throughput and higher transmembrane pressure (TMP) (>1.50 psi) in the later part of the run compared to cultures with PES and PS membrane. However, as permeate flux increased, the total mass of product decreased by around 30% for cultures with PVDF membrane, while it remained consistent with PES and PS membrane, and at the highest flux studied, PES membrane generated 12% more product than PVDF membrane. This highlights that membrane selection for large-volume perfusion bioreactors depends on the productivity and permeate flux required. Since operating large-volume perfusion bioreactors at low flux would require several cell retention devices and a complex setup, PVDF membranes are suitable for low-volume operations at low fluxes whereas PES membranes can be a desirable alternative for large-volume higher demand products at higher fluxes.

19.
STAR Protoc ; 5(2): 103026, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38691459

RESUMO

Here, we present a protocol for inoculating drinking water samples with a variety of pathogens or facultative pathogen bacteria. We describe steps for preparing bacterial solutions, inoculating mineral water bottles and other drinking water samples, filtration and incubation of the agar plates, and counting colony-forming unit per mL. We also detail procedures for determining selected chemical properties, such as anions and cations, which can also affect the bacterial growth. For complete details on the use and execution of this protocol, please refer to Schalli et al.1.

20.
J Struct Biol ; 216(2): 108096, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38697586

RESUMO

The bone extracellular matrix consists of a highly organized collagen matrix that is mineralized with carbonated hydroxyapatite. Even though the structure and composition of bone have been studied extensively, the mechanisms underlying collagen matrix organization remain elusive. In this study, we used a 3D cell culture system in which osteogenic cells deposit and orient the collagen matrix that is subsequently mineralized. Using live fluorescence imaging combined with volume electron microscopy, we visualize the organization of the cells and collagen in the cell culture. We show that the osteogenically induced cells are organizing the collagen matrix during development. Based on the observation of tunnel-like structures surrounded by aligned collagen in the center of the culture, we propose that osteoblasts organize the deposited collagen during migration through the culture. Overall, we show that cell-matrix interactions are involved in collagen alignment during early-stage osteogenic differentiation and that the matrix is organized by the osteoblasts in the absence of osteoclast activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...